Int. 4 Soiwds Structures Vol 29, Mo, 22 pp 2T9S-2814 1D 0G20-THR3IBI  $5.00-- 0
Printed 1 Great Brtam, ¢ 1992 Pergamon Press Lid

ELASTIC-PLASTIC ANALYSIS OF COMBINED
MODE I, I AND IIl CRACK-TIP FIELDS UNDER
SMALL-SCALE YIELDING CONDITIONS

J. Pan
Department of Mechanical Engineering and Applied Mechanics, The University of Michigan,
Ann Arbor, M1 48109, U.S.A.

and

C. F. Sun

Division of Engineering. Brown University, Providence, R1 02912, US.A.
(Received 18 June 1990 in revised form 22 March 1992))

Abstract—Within the context of the small-strain approach, combined mode I, Il and 1 near-tip
fields of stationary cracks in power-law hardening materials are investigated. We use a finite element
technique to obtain asymptotic angular stress solutions for combined mode I and Il perturbed from
mode [11. These perturbation solutions with the same stress singularities as those of pure mode Il
are presented for different hardening materials. The perturbation results further suggest that the
order of crack-tip stress singularities varies smoothly with changing mode mixity. We also employ
full-fictd finite element computations to study the small-scale yielding near-tip ficlds for several
combinations of prescribed remote mode L1 and [ elustic K fields. These solutions verify an
interesting pattern which agrees with the previous solutiouns for combined mode [ and 1 loading
as well as those for combined mode I and 1T loading : well within the plastic zone, under near
mode I mixed-mode loadings, the in-planc stresses are slightly more singular than r~ ¥ " while
the out-of-plane shear stresses are slightly less singular than r~ 7" P where 7 is the radial distance
to the tip and # is the strain hardening exponent of the material. To explain the complex behavior
of the near-tip stresses, we introduce an effective in-plune shear stress and an cifective out-of-plane
shear stress to quantify the in-plane and out-of-plane plastic shear at differeat oricatations in a
consistent manner, The full-ticld sotutions also corroborate the observation that the singularitics of

[. INTRODUCTION

Asymptotic plane-strain and plane-stress crack-tip stress and strain fields for power-luw
hardening materials and perfectly plastic materials have been obtained under pure mode |
and pure mode 11 conditions (Hutchinson, 1968a,b; Rice and Rosengren, 1968; Rice,
1968a) and under pure mode 11 conditions (Rice, 1968b). However, cracks in typical
engineering structures are generally subject to combined mode I, IT and [1 loading. Under
combined mode [ and [l conditions the asymptotic crack-tip stress and strain fields for
power-luw hardening materials and perfectly plastic materials have been presented by Shih
(1973, 1974). The results of Shih's full-field finite element computations indicate that within
the plastic zone the mode | opening stress ahead of the tip is enhanced due to matenial
plasticity. Further investigations of the material elasticity effects on combined mode [ and
I crack-tip fields for perfectly plastic materials can be found in Nemat-Nasser and Obata
(1984), Saka er a/. (1986) und Dong and Pan (19904, b, ¢).

Within the small-scale yielding formulation, Pan and Shih (19904, b) have obtained
the ncur-tip ficlds by finite clement methods under remote combined mode [ and 111 K fields
and under remote combined mode I and HI K ficlds. Under combined mode I and [
conditions the in-plane stresses well within the plastic zone are more singular than the HRR
singularity while the out-of-plane shear stresses are less singular than the HRR singularity.
In contrast, under combined mode IT and 111 conditions, the in-plane stresses within the
plastic zone are slightly less singular than the HRR singularity while the out-of-plane shear
stresses are more singular than the HRR singularity. The qualitative nature and quantitative
computational results of the angular and radial variations of both the in-plane stresses and
the out-of-planc shear stresses agree well with those of the perturbation analysis of Pan
(1990). This suggests that the perturbation analysis can clarify the nature of the crack-tip
singularity under combined in-plane and out-of-plane shear loading conditions. It should
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be noted that the separable stress function assumption for both in-plane and out-of-plane
shear stresses in Pan (1990) are only valid when either the in-plane loading or the out-of-
plane shear loading is smaller than the other, as shown in the finite element solutions of
Pan and Shih (1990a, b) for their particular mode mixtures.

Based on the work by Pan and Shih (1990a,b) and Pan (1990), we make these
observations regarding the structure of the combined mode I. Il and III near-tip fields:
under near mode I loading conditions the in-plane stresses should have a singularity stronger
than that of the out-of-plane shear stresses, and under near mode II loading conditions the
in-plane stresses should have a singularity weaker than that of the out-of-plane shear
stresses. This leads to a question of the existence of the same singularity for both the in-
plane stresses and the out-of-plane shear stresses asymptotically at the tip. The singularity
must be the HRR singularity according to the J integral argument of Rice (1968) and Rice
and Rosengren (1968). In this paper we investigate the asymptotic structure of crack-tip
fields under combined mode I, T and I and attempt to answer the question of existence
of the HRR singularity under combined mode I, 1l and [ loading conditions by a
perturbation analysis and tull-field finite element computations.

We begin by reviewing an asymptotic analysis of combined mode | and [T crack-tip
fields perturbed from pure mode I as in Pan (1990). This leads to the first-order perturbed
stress—strain relation for use in a finite element technique (Symington et al., 1990) to obtain
the solutions of the perturbed crack-tip ficlds. Perturbed combined mode 1 and H solutions
with the HRR singularity are presented for ditferent hardening exponents. These sotutions
yield the exact mode mixities where the in-plane stresses and the out-of-plane shear stresses
have the same HRR singularity. Furthermore, the perturbation solutions suggest that the
refative singularities of in-plane stresses to the out-of-plane shear stresses depend on mode
mixity. Next we discuss several combined mode [, [Tand [T full-ficld finite element solutions
obtained under small-scale yiclding conditions., These small-scale yielding solutions not
only indicate that the crack-tip singularities for certain mixities ot mode I, 11 and I are
very close to the HRR singularity, but also point to some complex behavior of in-plane
stresses under near mode 1 loading due to the dominant nature of mode T loading and
plasticity. Finally we introduce an eflective in-plane shear stress and an effective out-of-
plane shear stress to quantfy the tn-plane and out-of-plane plastic shear at diflerent
orientations in i consistent manner.

2. HUTCHINSON-RICE-ROSENGREN (HRR) CRACK-TIP FIELDS

To describe the elastic—plastic behavior of the materials we consider here, we use the
Ramberg-Osgood law, which is widely employed for fitting uniaxial tensile stress-strain

relations:
£ a g\ )
=+(> W
£y Oy Gy

where ¢ is the tensile strain, o is the tensile stress, &, and o, are the reference strain and
reference stress (we take £, = oo/ E where £ is Young's modulus), x is a material constant
and n is the hardening exponent. A generalization of eqn (1) gives the strains &, written as
the sum of an elastic part &, and a volume-preserving plastic part & :

£, =&+ (2)

The terms in (2) arc given by
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where v is Poisson’s ratio. s, (= g,,— i6,J,) are the deviatoric stresses. and o, [= (3s;5,/2)" 7]
is the effective stress.

We consider a crack in a Ramberg-Osgood solid, as shown in Fig. |, where r and 6
are the polar coordinates centered at the crack tip. As r approaches 0. the linear elastic part
of the strain is negligible compared to the plastic part. The asymptotic crack-tip stress,
strain and displacement fields can then be expressed as (Hutchinson, 1968a.b; Rice and
Rosengren. 1968 : Rice. 1968b; Shih. 1973. 1974)

J lin+1)
g, = ao< > G, (0:n, M),

x0,€01r

J n(n+ 1)
g, = A€ E;(B:n M),
/ 0 <10’050[") /( )

./ n(n+1)
aE " (10080h> a@:n, M), 4

u—u;

where the dimensionless constant [ and the dimensionless angular functions 6, €, and &,
depend upon the hardening exponent n ; the state of plane-strain, plane-stress or anti-plane
deformation ; and the mode parameter M (mode [, mode II, mixed-mode I and II, or mode
[I1). The constants i, allow for a possible rigid body motion of the crack tip itself. The J
integral (Rice, 1968a) in eqn (4) represents the amplitude of the singular crack-tip stress
and strain fields. Recent studies of the asymptotic crack-tip fields for power-law hardening
orthotropic materials and for power-law hardening pressure-sensitive dilatant materials
show the same type of functional forms as eqn (4) for the asymptotic crack-tip ficlds (Pan
and Shih, 1986, 1988 Li and Pan, 1990a. b).

Under combined mode 1, 1 and 11 conditions, cqn (4) may not accurately represent
the ficlds within physically reasonable radial distances to the tip for all mode mixtures since
in general the relative singularitics of the in-plane stresses and the out-of-plane shear stresses
depend on the radial distance r to the tip, For the convenience of quantification, three
plastic mixity factors MT(r), M8,(r) and M7,(r) can be defined from the ratios of the in-
plane opening stress 6, the in-plane shear stress a,,, and the out-of-plane shear stress o,
at a distance r ahead of the tip as

2 oulr.0 =0)
VP (r)=-tan ' | 2T 7
MT,(r) - tan [gl,:(r‘ 0=0)[ (3)
by (x2) u
r
e V-
\ X (xy)
crack

Fig. I. A crack subjected to combined mode I, IT and 111 elastic K ficlds along the circumferential
boundary.
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M = San | 20 =0 (6)

M) = _tan iz | 6)
and

Vo _ : " 1 Guu(r. H = ()) (.’

Mir) = 2an gur.8 =01 )

Here r 1s smaller than the smallest radial extent of the plastic zone. Thus, when both M7,
and M¥, equal 0. we have pure mode Il crack-tip fields. Under pure in-plune loading
conditions. both M7, and M?%, equal 1. We need only the mixity factor M7-(r) (Shth, 1973,
1974) to specify the mixed mode [ and I crack-tip field. The asymptotic crack-tip tields
exist under in-plane mixed-mode conditions (Shth, 1973, 1974): an asymptotic value of
M7.(r) as r approaches 0 (within a physically reasonable radial distance to the tip) can be
found under small-scale yielding. The values of M7T.(r) M3.(r) and MT.(r) range between
| and 0 for combined mode [, IT and HI near-tip fields. Note that only two of the three
mode mixities are needed to specify a combined mode I 1T and HI crack-tip ficld at a given
radial distance r,

3 PERTURBATION ANALYSIS AND RESULTS
In this scction, the perturbation analysis of Pan (1990) which leads to the essentiad

information for the modification of Symington ¢r s (1990) finite clement method for
calculation of the perturbed asymptotic crack-tip ficlds s briefly discussed. The in-planc
stress function ¢ and the out-of-plance stress function i are assumed in separable forms as
in Pan (1990):

¢ = Kr'p(0) (%)
and

W= Lrij(0), (9)
where K, L, v and ¢ are constants, and ¢(8) and /(0 are functions of their argument 0 tor
a given power-law hardening material. The stresses derived from the stress functions are

7, =Kr %,

G = Kr’ :5',;”.

Ty = Kr' :0:,”.
o.=Lr" "6,

an. = Lr' 6. (10)
where

G, =shp+d.
Gow = s(s— 1),
G = (1=5)"

Gre =W

G = (L —11f. (1)

Il

Here () represents ¢()/86). Note that for a given power-law hardening material, 6.,. G
and &.. are functions of # and s. and &,. and §,. are functions of ¢ and 7. As shown in
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Hutchinson (1968a, b). Rice and Rosengren (1968), Shih (1973. 1974) and Rice (1968b),
the value of s and ¢ is

2n+1
== 12
=t n+l (12)

for either pure in-plane modes (mode I, mode Il and combined mode I and II) or a pure
out-of-plane shear mode (mode II). When we seck solutions of the singular crack-tip
fields of the forms (10) and (11) under combined in-plane and out-of-plane shear loading
conditions, the values of s and ¢ in general are assumed to be different. Since we are seeking
singular solutions in the immediate vicinity of the crack tip. we are interested in the solutions
with both s and ¢ being less than 2. As r approaches 0. the in-plane mode will dominate for
s <t whereas the out-of-plane shear mode will dominate for ¢ < 5. Remember that the
assumptions of (8) and (9) are approximately valid when either the in-plane mode or the
out-of-plane shear mode is smaller than the other for the mode mixtures investigated by
Pan and Shih (1990a. b).

The coupling of the in-plane plastic deformation and out-of-plane shear plastic defor-
mation is through the effective stress g, in the constitutive equation (3). The effective stress
o, in the cylindrical coordinate system is expressed as

(Tcz = i‘(ﬁrr“(fl:::)2+3(fsu+3(7i+30'J’:- (13

Substituting (10) into (13) gives

ol = (Kr' IS+ (Lr *)TL (14)
where
S = 1(d,, =) + 36} (15)
and
T2 =362 +36%. (16)

Note that S, and T, are functions of ¢ for a given n. More importantly, since we assume
that s is not equal to 1, g, cannot be expressed as a separable function of r and 0, such as
those stresses in (10). We can define the maximum magnitude of the 0-variations S, and 7.
to be unity. Then K and L represent the singularity amplitudes of the in-plane stresses and
the out-of-plane shear stresses, respectively.

It is possible that the values of s and ¢ are equal to each other for certain mode mixities.
When s = ¢ the asymptotic governing equations can be derived and then supposedly solved
by the shooting method. However, the shooting method will be cumbersome and difficult
for solving this class of problems with homogencous stress-free boundary conditions as
discussed in Shih (1973, 1974), especially for combined mode [, H and I problems. It is
also possible that we try to solve for perturbed mode [II crack-tip fields from combined
mode I and II solutions. However, the simplest task is to solve for perturbed combined
mode I and Il crack-tip ficlds from mode I since closed-form mode I11 crack-tip stress
solutions exist (Rice, 1968b). Thercfore we consider the cases where the contribution of the
in-plane stresses to the effective stress is smaller than that of the out-of-plane shear stresses
(or K/L « 1). Equation (14) can be rewritten as

o.= Lr' g, (17)

=2 _ 2 K \ Us~0) S:'::
O, = Tc (‘ +<Z)f Tug) (‘8)

where 4, is now defined as
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As shown in the finite element computations of Pan and Shih (1990a, b), the singularities
of the crack-tip in-plane stresses and out-of-plane shear stresses usually differ only slightly.
Therefore, s—1 in (18) can be assumed to be a small number. For small r. r*“~" in (18)
becomes finite and has an order of unity. Therefore, é. does have a weak dependence on r.
Then, (K/L)® determines the order of magnitude of the second term on the right-hand side
of (18). Note that (K'L)*r*" " represents a mixity factor of the in-plane mode and the out-
of-plane shear mode.
The strains can be expressed as

K
N ¥4 U ~2D=s—t=n—11¢x ~
&, = N <[: rm e A, —6),

En = —&,,,
K .
& =N(Z ’/l(r——.)vv—lo::f—lo,m‘

= Nrmt» ..)(i'lA IO:,_.,

e

o = Nr' =676, (19)

3 LY
(K] o

Under pure mode T conditions, the closed-form stress solutions given by Rice (1968b)

where

dre

. n+lsin2p |t Y
T = [ N "} . 1)
2n sind)
where
2n = 0+sin ' 'fjf]—sin() (22)
2y s wt] } 22

Note that 7,(0) = | and the value of 1 equals the HRR value for pure mode I11.

When we consider the asymptotic combined mode [ and 11 crack-tip fields perturbed
from mode 111, the lowest order relation between the normalized in-plane strains £, and the
normalized in-plane stresses 4,; in matrix form is

£, I -t 0\ (4,
ALY S b0 |G- (23)
R 0 0 4/ g,

Note that T, is a function of 0 for a given power-law hardening material. Equation (23) is
the essential input for employing Symington et al.’s (1990) finite element method to solve
for the perturbed asymptotic crack-tip ficlds.

Symington et al. {1990) constructed a finite element method for computing the angular
variation of asymptotic singular crack-tip stresses and strains. In their formulation the
asymptotic stress and strain fields must be of a separable form in polar coordinates. The
radial dependence of stresses and strains is assumed to be known. Their finite element
method is based on a weak form of the compatibility equation with the homogeneous
boundary conditions at the stress-free crack faces. We adopt their method to calculate the
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perturbed crack-tip fields. Here we only present the necessary modification of their finite
element method in eqn (23) for the present perturbation problem. Interested readers are
referred to Symington er al. (1990) for the detailed finite element formulation. Under
combined mode [ and II loading. the stress and strain singularities [denoted by § and p in
Symington ¢z al. (1990)] are known from the J integral argument by Rice (1968b) and
Symington er al. (1990) actually solved a system of nonlinear equations using the Newton-
Raphson method.

For the present perturbation problem. the compliance matrix between the normalized
in-plane strains ¢, and the normalized in-plane stresses 6, in eqn (23) is a function of the
angular location € only. Here, f =2—s5 and p = t~s5—n{r—2) where the value of ¢ of
unperturbed pure mode III is the HRR value. The value of s depends upon the in-plane
mode mixity. Inversely. the in-plane mode mixity depends upon the value of 5. If a value
of s is given. then the system of governing equations based on the formulation of Symington
et al. (1990) with eqns (23) becomes linear and no iteration is required to solve for the
angular variation of the perturbed asymptotic crack-tip fields. In other words, for a given
value of s, the finite element computation will result in an angular variation of stresses with
a mode mixity evaluted at § = 0.

The finite element model of the domain from —r to = is constcucted by 360 2-node
elements with Hermitian interpolation functions. Discussions of the mesh refinement on
computational results can be found in Symington er al. (1990). The values of 5 for input
to the finite element calculations were selected from the solutions of perturbed mode [ and
mode I1 by Pan (1990). The finite element results agree well with those obtained by the
shooting method. Next we used values of s between those for perturbed mode [ and mode
I1. For these values of s we obtained solutions with the mode mixity factors M7, ranging
from 1 for perturbed mode [and 0 for perturbed mode I In the interest of space we present
the combined mode [ and 11 solutions with the HRR singularity for n =3 and n = 10 in
Fig. 2. The values of M1, for the perturbed crack-tip ficlds with the HRR singularity shown
in Fig. 2 are 0.56 and 0.46 for n = 3 and n = 10, respectively. The value of MY, for the
perturbed crack-tip ficlds with the HRR singularity is .38 for # = 20. Observe that the
mode mixity for the perturbed crack-tip ficld with the HRR singularity decreases with the
increase of the hardening exponent n. This is gqualitatively in agreement with the general
trend that the enhancement of the in-planc opening stress increases with the increase of a
under both combined mode [ and If conditions and combined mode I and I conditions,
Note that &, at 180" and — 180" has the same magnitude. A simple perturbation of the
analysis in Budiansky and Rice (1973) can indicate thuat the perturbed radial stresses at the
stress-free cruck faces must have the sume magnitude but not necessarily the same sign.

4. SMALL-SCALE YIELDING COMPUTATIONAL MODEL

We consider the small-scale yielding problem depicted in Fig. I, where a crack in a
circular domain is shown. Along the remote circular boundary, displacement fields based
on the mode I, and IT and HI asymptotic crack-tip solutions for linear elastic materials are
applied. The in-planc displacements u, (i = 1, 2) and the out-of-plane displacement u; are
prescribed as

K r 1IN N 2 r P2
u = 2& (5&) alo. v+ 23 (i‘&) a0, v), (24)
and
K r 1:2~
U, = Z_‘G‘—‘ (2—&) o). (25)

where G represents the shear modulus, and K;, K, and Ky, represent the far-field mode I,
Il and TIT stress intensity factors. respectively. The dimensionless functions a'(0. v),

SAS 29:22-H
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Fig. 2. The normalized angular stress functions of combined mode Fand [1 with the HRR singulanty
(perturbed from mode 1) for () n = 3, and () n = 10.

ai' (0, v) and @4'(0) are the well-known lincar elastic asymptotic displacement solutions
[for example, see Kanninen and Popelar (1985)].

The elastic far-tield is completely specified by the three stress intensity factors, K, K|
and Ky, (recall that the angular functions #1(0,v), #!'(0,v) and 7Y'(0) are known). Alter-
natively, we can use another set of three parameters, the J integral and two elastic mixity
factors, to specify the elastic far-field. The J integral is related to K, Kj, and Kj;; by

L=t
J= UKIRKD) +

[
£ = Kiir. (26)

2G

The clastic mixity factors A5, and M5, related to the mixity of the in-plane modes and the
out-of-plane shear mode for the small-scale yielding formulation are defined as

~

[ aw@=0] 2 [A} ,
=T - 27
. Jan) = 0)] - tan K. (27)

My = -tan

and

2 A =0>} 2 [A]
15, = —tan~ ' | lim i i =~ t - |. 28
M, 7rtm _’!"n'] 0= 0) an I (28)
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According to eqns (27) and (28). M3, and M5, equal 0 for pure mode I{I. When both
MS; and M%; equal 1, a mixity factor M, (Shih, 1973) is required to describe the combined
mode [ and II crack-tip field.

2 X a’m,({? =0) 2 K(
M. =2 ~1i ___.,__i_w !‘_“.I. 29
I|~ tan rliﬂ; '”(0 0) tan ,“ ( )

The values of M5, MS, and M, lie between | and 0 for any combination of mode [, 1
and II1 loadings. In fact, only two mixity factors are needed to fully describe a mixture of
three modes. For a combination involving only two modes. a single mode mixity suffices
to quantify the mode mixture. Note that these mixity factors are defined in terms of the
relative contributions of the in-plane opening stress. the in-plane shear stress, and the out-
of-plane shear stress ahead of the tip. Under small-scule yielding conditions. they can be
expressed as functions of the ratios of the stress intensity factors as in (27)-(29).

The finite element model of the circular domain is constructed using 9-node quadri-
lateral Lagrangian elements. Wedge-shaped 9-node clements are used in the immediate
crack-tip region. The size of the wedge-shaped elements in the radial direction is denoted
as r. These elements are surrounded by circular strips of elements ; four strips of elements
span cach decade of r/ry. where r,, denotes the radius of the circle as shown in Fig. 1. We
take r,/r, = 1077 in this investigation. Therefore, 28 strips of elements, which are generated
by a logarithmic scale, span the domain between r/ry, = 10 7 and r/r, = 1. Within cach
strip, the angular distance from —x to mis spanned by 20 clements of equal size. Therefore,
the total number of elements is 580.

The finite clement formulation for this work will be discussed only briefly here. The
B-har method (Hughes, 1980) is used to construct the strain displacement matrix of our
9-node quadrilateral Lagrangian clements. This method alleviates the poor performance of
our gquadrilateral Lagrangian elements in the fully plastic range (Nagtegaal et af., 1974).
fn this study, we employed the parameter tracking method (Shih and Needieman, 1984).
We begin by obtaining the lincar elastic solution at a load. This solution is then used as the
initial estimate in the iteration for a mildly nonlincar problem with, say, n = 2. We then
use the convergent solution for the mildly nonlincar problem as the initiul estimate for a
more nonlinear problem. In this manner, solutions can be obtained for high-hardening to
low-hardening materials, Generally speaking, after four to five iterations, a convergent
solution, with a Euclidean error norm of about 10 "%, for a slightly lower hardening solution
is obtuined from a slightly higher one.

5. SMALL-SCALE YIELDING NUMERICAL RESULTS

Under combined mode 1, I and 11 loading conditions, the in-plane stresses and out-
of-planc shear stresses within the plastic zone are coupled through the effective stress in the
plastic stress-strain relations. We have systematically examined the effect of this coupling
on near-tip ficlds. To elucidate the rather complicated nature of the near-tip fields for a
complete range of combined-mode loadings, numerical solutions must be presented in an
appropriately normalized form. To this end, deformation plasticity solutions for a number
of combinations of mode I, I, and Il and for hardening cxponents # in the range (=10 are
obtained. In these computations, we set v = 0.3 and « = 0.1. Our finite clement solutions
produced the correct HRR singularities, namely r =" * ! for the special cases of pure mode
[. pure mode 1, pure mode [1I and combined mode [ and 1l remote toadings. For the lincar
clastic problems, the numerical solutions produced the precise clastic l/\/r singularity and
the associated angular functions for various combinations of mode I, I and 111 loadings.
Furthermore, for each of the convergent solutions, our J values, as calculated by the domain
integral method (Li er ol., 1985 Shih e al., 1986 ; Moran and Shih. 1987) for each of the
circular strips, differed by less than 1% from the prescribed value as determined by (26).
The path-independence of the computed J values and the excellent agreement with (26)
attest to the quality of our finite element solutions.
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By the process of parameter tracking. we have obtained solutions tor the full range
of n values {1 € n € 10) and various mixtures of mode I. Il and II1. To examine the depen-
dence of the near-tip stresses on the radial distance r (at fixed #). we plot the normal-
ized stresses as functions of the normalized radial distance to the tip using a log-log
scale. The numencally determined stresses are divided by the HRR singularity such that
G,=0, [o4(J 25,e,r)" "~ "']. The radial distance is normalized by the length of the plastic
zone, r,. at the angle of interest. To examine the angular variations of the near-tip stress
fields, we plot the normalized stresses 4. (in the r. ¢ and = coordinates) as functions of ¢
at a radial distance of r'r, = 10 ", For cach problem analysed. the magnitude of the far-
field displacement field is chosen so that the maximum extent of the plastic zone {(as a
function of €) is no more than 10% ot r,. Thus the stresses deep within the plastic zone can
be investigated under the small-scale yielding conditions.

In the interest of space. only solutions for # = 3 and 10 and for remote displacement
boundary conditions corresponding to three mode mixities are presented. We select the
three representative cases where the out-ot-plane shear contribution and the in-plane con-
tribution to the remote A fields can be said to be equal to cach other. Specifically, we define
an equivalent in-plane A parameter, K = (K7 + A7)’ ~. The three representative cases have
K/K,; = |. The in-plane mixity factors M. of the three cases are varied. They are 0.83,
0.5 and 0.17. which represent Ky /Ry = 0.27. K A = Land KKy = 0.27, respectively. The
three elastic mixity factors for Case | are VWY, = 083, W5, = 049 and M5, = 0.16. The
elastic mixity factors for Case 2 are M5, = 0.5, M5, = 0.39 and M5 = 0.39. The elastic
mixity fuctors for Case 3are M5, =017, M5, = 0.16 and M5, = 0.49.

Figures 3.5 show the normalized in-plance stresses @, 4., and 4, the normalized
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effective stress 6., and the normalized out-of-plane shear stress ,. at # = —9” as functions
of r/r, in a log-log scale for Cuse 1, 2 and 3, respectively. In Figs 3-5, outside of the plastic
zone {log (r/r,) > 0], the variation of the stresses with the radial distance is in agreement
with the elastic singularity. In general, in Figs 3-5, as r/r, decreases within the plastic zone,
the stresses tend to level off. Since the numerically determined stresses are normalized by
the HRR singularity, the levelling-off means the radial variation of the stresses is in accord
with the HRR singularity. However, depending upon the mode mixity, the singularities of
the stresses may be slightly different from the HRR singularity. In general, the in-plane
stresses are more singular than the HRR singularity and the out-of-plane shear stresses are
less singular than the HRR singularity when near mode I loading conditions prevail. This
effect decreases as the mode Il contribution increases.

Figure 3 shows the results for Case | where the remote loading has a small mode I1
contribution and is close to combined mode I and I conditions. The trends of the stress
singularitics can be seen more clearly for # = 10 in Fig. 3b. Decep within the plastic zones,
the singularities of the in-plane stresses 6., 6,, and &, are slightly stronger than the HRR
singularity and the singularity of the out-of-plane shear stress 4,. is slightly weaker than
the HRR singularity. However, therc is a complicating factor in addition to the coupling
effect of the in-plane and out-of-planc shear plastic deformation. Specifically, the asymptotic
value of M7, is larger than the value of A/, under in-plane mixed-mode conditions (Shih,
1973, 1974). This means that as r decreases. material plasticity enhances the in-plane
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opening stress relative to the in-plane shear stress ahead of the tip. This effect 1s more
pronounced for low-hardening materials. Here, as r/r, decreases, ¢, for n = 3 decreases in
Fig. 3u, and &, for n = 10 also decreases initially in Fig. 3b. But as r/r, further decreases,
G, for n = 3 tends to level off in Fig. 3a while 6., for n = 10 increases in Fig. 3b. This can
be explained by the stronger enhancement of the dominant mode 1 eftects by the presence
of mode Il loading. Also. low hardening enhances this coupling effect as shown by the
lurger decrease of 6, for v = 10 1n Fig. 3b in comparison with that of &,. for n = 3 in Fig.
3a as r/r, decreases.

Solutions for Casc 2 where the mode Il contribution to the loading is more than that
of Case | are shown in Fig. 4. All the stresses seem to level off to approach the HRR
singularity as rjr, decreases. However, when we examine the results closely, we find that
the singularity of the in-plane shear stress is slightly weaker than the HRR singularity.
Figure 5 shows the results for Case 3 where the remote loading has a small mode |
contribution and is closc to combined mode 11 and HI conditions. In this case, all the
stresses seem to level off to approach the HRR singularity as r/r, decreases. However, when
we examine the results closely, we find that the singularity of the in-planc shear stress is
slightly weaker than the HRR singularity and the singularity of the out-of-plane shear stress
is slightly stronger than the HRR singularity. This trend agrees with that under combined
modec Il and [T conditions.

Figurcs 6-8 show the normalized stresss &, at about rir, = 10" as functions of 8 for
Case 1|, 2 and 3, respectively. As shown in these figures, and out-of-planc shear stresses 4,
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and G,. do not have the anti-symmetry with respect to the crack line due to the coupling
effect of the in-plane and out-ot-plane shear plastic deformation under asymmetric in-plane
loading conditions. Further, these figures show that the elevation of the triaxiality for low-
hardening materials (with large n) due to plasticity is higher under near mode I mixed-
mode loading conditions. When we compare the angular functions of the in-plane stresses
in Figs 6-8 with Fig. 2, we find that the angular functions in Fig. 7a for n =3 with
M?%, = 0.51 are similar to those in Fig. 2ua for n = 3 with M%, = 0.56. Also, the angular
functions in Fig. 8b for n = 10 with M?%, = 0.33 are close to those in Fig. 2b for n = 10
with M%, = 0.46. These plastic mixity fuctors are obtained from the stresses at § = 0, which
are interpolated from the finite element results at Gauss points. Under the condition that
the values of M7, are nearly in accord, the qualitative agreement between the angular
functions of the full-field finite clement results (at a radial distance with a near HRR
singularity) and the perturbation solutions with the HRR singularity attests to the quality
of both finite clement computations. It also provides support for the utility of perturbation
analysis to this class of problems to predict the singular behavior of in-plance stresses and
out-of-plane shear stresses.

The elastic mixity factors for Case | are M5, = 0.83, M5; = 0.49 and M5, = 0.16. At
about rfr, = 1077, the plastic mixity factors are A%, = 0.89, M7}, = 0.62 and M%, =0.17
forn =3 and M%; = 0.93. M5, = 0.74 and M?%, = 0.16 for n = 10. At about r/r, = 1077,
the plastic mixity factors are M%, = 0.90, M%; = 0.66 and M?%, = 0.17 for n =3 and
M7, =094, M7, =0.79 and M5, =0.17 for n = 10. These trends of the plastic mixity
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factors continue at a smaller r/r,. The trends for the three cases are essentially similar: the
plastic mixity factors M%, and M7, increase as r/r, decreases. This effect is more evident
for near mode I loading and for low-hardening materials {(with large n). The trend of the
plastic mixity factor M%, as a function of r/r, depends upon the competition of the
strengthening of the in-plane mode due to the presence of mode I loading and the weakening
of the in-plane mode due to the increase of mode I1 contribution. Low-hardening and near
mode I loading promote an increase of M1, as r/r, decreases. On the contrary, as the mode
IT contribution increases, as in Case 3, the plastic mixity factor M7, slightly decreases as
r/r, decreases. As we continue to investigate the radial variation of the stresses to very small
and physically unrcasonable radial distances at r/r, = 107* for the three cases by using a
very refined mesh, the results show that M%, and M?%; increases as rjr, decreases. This
suggests that the mode mixtures in Cases 2 and 3 do not have the mathematically exact
HRR singularity.

Plastic zones

Figures 9a, b show the plastic zone sizes and shapes for the three cases in the normalized
coordinates £ (= voi/JEYand ¥ (= yo}/JE) for n = 3 and 10, respectively. The normalized
plastic zones for the threc cases exhibit no symmetry with respect to the crack line: this is
similar to those under combined mode I and Il conditions but in contrast to those under
pure mode I, pure mode I, pure mode I, combined mode I and 1] and combined mode
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I and III conditions. As the mode [l contribution increases, the plastic zone becomes
increasingly symmetrical with respect to the crack line. The plastic zone shifts ahead of the
crack as the hardening exponent n increases. This trend agrees well with those of the pure
mode 1, pure mode [I, pure mode III, combined mode I and II, combined mode [ and III,
and combined mode [l and [l cases. Note that the radial extents of the plastic zones as
functions of § for the three cases vary smoothly due to the presence of mode III loading.
These features are different from those that develop under pure in-plane loadings but are
similar to those for the corresponding combined mode I and III, and combined mode 11
and III cases.

6. DISCUSSIONS AND CONCLUSIONS

As previously discussed, the in-planc and out-of-plane shear stress and strain fields are
coupled through the cffective stress. In general, this coupling is rather complex and the
stresses for both in-plane and out-of-plane shear modes do not conform to a separable
form over distances to the tip which are physicaily reasonable. However, when either one
of the in-plane or out-of-planc shear modes is dominant, the perturbation analysis based
on separable stress functions (Pan, 1990) does correctly predict the asymptotic behavior of
the full-field solutions (Pan and Shih, 1990a, b). When the contributions of in-plane and
out-of-plane shear modes are comparable. no separable asymptotic in-plane and out-of-
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plane shear stresses are expected except that both in-planc stresses and out-of-plune shear
stresses cun have the same r " Y singularity. Consequently, we do not expect to find the
same asymptotic behavior for either the in-plane stresses or the out-of-plane shear stresses
at all angles at every mode mixity.

It is an accepted procedure to define mode mixities in terms of the ratios of the in-
planc opening stress, in-planc shear stress and the out-of-plane shear stress ahead of the
crack. This is the reason for displaying the radial dependencies of the stresses ahead of the
tip in Figs 3-3. Howcver these stresses do not provide relative measures of the in-plane
versus out-of-pliane shear modes when the fields along ¢ # 0 are examined. To carry out
comparisons of ficlds at different angles, it is helpful to use conststent stress quantities
representing the out-of-planc and in-plane shear. Consistent stress measures can be derived
by considering the effective stress which is an invariant of the deviatoric stress. The effective
stress in the cylindrical coordinate system, o, is defined as

Uc: = Ya,, — Gun)” + g(”ma - (7,-;): + 5(0'_-: -a,) + 30’3:) + 3‘75_ + 30’«%:- (30)
As in the perturbation analysis, we can define an effective out-of-planc shear stress 7T, as

Tc: = 30’,74"‘30_5‘:- (31)
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Note that T, is an invariant for any coordinate systems rotating with respect to the out-of-
plane axis. Then another invariant for these coordinate system rotations can be defined as

S: = Yo, —ow) + %(Uue—a::)z“"%(0':.-"0"):‘*‘3(73;% (32)

When the elastic strain is small compared to the plastic strain and can be neglected. eqn
(32) reduces to

Si=1i(0,—0w’ +30% (33)
according to plastic incompressibility. By virtue of (33) S, may be interpreted as an effective
in-plane shear stress. Therefore S, defined in eqn (33) can be regarded as the effective in-
plane shear stress. Making use of (31) and (32) we have

0. =T +S;. (34)

The effective out-of-plane plastic shear strain ¢, and the effective in-plane plastic shear
strain &, can be defined as

n - |
o S
fe = & —) (35)
Tg Ty
Note that
65 = on el = 3elel, (36)

where ¢, represents the effective plastic shear strain. Now it is clear from egn (35) that the
ratio 1./8. also represents the ratio of the effective plastic shear strains, ¢./e,.. Therefore
the ratio 7./, or parameters based on T./S, can serve to characterize the relative strength
of the out-of-plane and in-plane plastic shear for this class of problems. Now we will show
that the singularity behaviors of these effective stresses along angles (0 = —97 and 45%) are
consistent for the cases examined in this paper.

In Figs 10a, b, the normalized effective stresses for Case 1 are shown as functions of
the normalized radial distance to the tip in a log-log scale for = —9” and 45°, respectively.
We present results for n = 10 because the low hardening brings out the plasticity effect
more vividly. In these plots, the radial distances are normalized by the plastic zone extents
at the corresponding angles. The hydrostatic stress oy, is also plotted to show its singular
behavior. In Fig. 10, the general trends of these effective stresses and the hydrostatic stresses
relative to the HRR singularity at different angles are consistent : the effective out-of-plane
shear stresses have weaker singularities whereas the effective in-plane shear stresses have
stronger singularities, the effective stresses have weaker singularities, and the hydrostatic
stresses have stronger singularities when compared to the HRR singularity. Note that a
field having an HRR singularity exhibits a zero slope in these log-log plots. Upon closer
examination we note these effective stresses and the hydrostatic stresses do not have exactly
the same slopes at different angles. But the general trends of the singularity behaviors at
different angles are consistent. It may be recalled that no consistent trends could be discerned
by studying the stress distributions in Fig. 3 where the dominant effect of mode [ complicates
the stress patterns that develop under Case [ loading.

For Case 2. the in-planc and out-of-plane shear stresses appear to level off approaching
the HRR singularity as r/r, decreases, as shown in Fig. 4. However, a distinctly different
pattern emerges in Figs lla,b. Here the radial variation of the effective stresses and
hydrostatic stress pertaining to Case 2 for n = 10 at § = —9° and 45" are shown. The
effective out-of-planc shear stresses have stronger singularity, the effective in-plane shear
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stresses have weaker singularity, and the hydrostatic stresses have stronger singularity when
compared to the HRR singularity. The dominant hydrostatic stress gives the in-plane
stresses ahead of the tip with the singularities slightly stronger than the HRR singularity.
Strictly speaking, we should regard Case 2 as an out-of-plane shear dominant case under
this shear-based plasticity approach. For Case 3 where mode I is dominant, the trend of
the singularity behavior of all the effective stresses and the hydrostatic stresses at different
angles are the same as those of Case 2. In the interest of space, we do not show the results
for Case 3 here. When the mode mixities are defined in the conventional way by the ratios
of the in-plane opening stress, in-plane shear stress and out-of-plane shear stress as in eqns
(5)~(7), both Cases 2 and 3 can be regarded as in-planc mode dominant cases as r/r,
decreases asymptotically to zero. However, from the shear-based plasticity viewpoint. both
Cases 2 and 3 should be regarded as out-of-plane shear dominant cases.

In summary, we have obtained asymptotic solutions of combined mode I and I1 crack-
tip ficlds perturbed from mode [l for cracks in power-law hardening materials. Our
solutions indicate that the perturbed combined mode 1 and I1 crack-tip fields of certain
mode mixitics can have the HRR singularity. Our small-scale yiclding results show that
deep within the plastic zone, under near mode | mixed-mode loadings, the in-plane stresses
can be said to be slightly more singular than =1 " while the out-of-plane shear stresses
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are slightly less singular than r~""* " and the plastic mixity factors M?%, and M%, increase
as r/r, decreases. The results also demonstrate that the singularities of the in-plane stresses
and the out-of-plane shear stresses vary smoothly with mode mixity. Finally, the effective
in-plane shear stress and the effective out-of-plane shear stress have been introduced to
characterize and quantify the in-plane and out-of-plane shear in a consistent manner for
this class of problems.
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